Feature Discovery in Non-Metric Pairwise Data

نویسندگان

  • Julian Laub
  • Klaus-Robert Müller
چکیده

Pairwise proximity data, given as similarity or dissimilarity matrix, can violate metricity. This occurs either due to noise, fallible estimates, or due to intrinsic non-metric features such as they arise from human judgments. So far the problem of non-metric pairwise data has been tackled by essentially omitting the negative eigenvalues or shifting the spectrum of the associated (pseudo-)covariance matrix for a subsequent embedding. However, little attention has been paid to the negative part of the spectrum itself. In particular no answer was given to whether the directions associated to the negative eigenvalues would at all code variance other than noise related. We show by a simple, exploratory analysis that the negative eigenvalues can code for relevant structure in the data, thus leading to the discovery of new features, which were lost by conventional data analysis techniques. The information hidden in the negative eigenvalue part of the spectrum is illustrated and discussed for three data sets, namely USPS handwritten digits, text-mining and data from cognitive psychology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Fully-Connected CRFs with Non-Parametric Pairwise Potentials

Conditional Random Fields (CRFs) are used for diverse tasks, ranging from image denoising to object recognition. For images, they are commonly defined as a graph with nodes corresponding to individual pixels and pairwise links that connect nodes to their immediate neighbors. Recent work has shown that fully-connected CRFs, where each node is connected to every other node, can be solved efficien...

متن کامل

Metric concentration search procedure using reduced matrix of pairwise distances

This paper presents a new fast clustering algorithm RhoNet, based on the metric concenration location procedure. To locate the metric concentration, the algorithm uses a reduced matrix of pairwise ranks distances. The key feature of the proposed algorithm is that it doesn’t need the exhaustive matrix of pairwise distances. This feature reduces computational complexity. It is designed to solve t...

متن کامل

Kernel-Based Metric Adaptation with Pairwise Constraints

Many supervised and unsupervised learning algorithms depend on the choice of an appropriate distance metric. While metric learning for supervised learning tasks has a long history, extending it to learning tasks with weaker supervisory information has only been studied very recently. In particular, several methods have been proposed for semi-supervised metric learning based on pairwise (dis)sim...

متن کامل

Indicator of $S$-Hausdorff metric spaces and coupled strong fixed point theorems for pairwise contraction maps

In the study of fixed points of an operator it is useful to consider a more general concept, namely coupled fixed point. Edit In this paper, by using notion partial metric, we introduce a metric space $S$-Hausdorff on the set of all close and bounded subset of $X$. Then the fixed point results of multivalued continuous and surjective mappings are presented. Furthermore, we give a positive resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2004